The FITS model
An approach for teaching and learning through design and inquiry

Focus
Investigation
Technological design
Synergy

dr. Dave H.J. van Breukelen
d.vanbreukelen@fontys.nl
Fontys University of Applied Sciences for Teacher Education Sittard (NL)
Content

- A brief history of science education in The Netherlands
- Why a tendency towards interdisciplinary STEM education?
- Design-based learning (DBL) as educational approach
- Common issues and challenges of DBL
- The FITS model: learning by design and inquiry
- Fundamental didactic principles
- The crucial role of teachers
A brief history of science education (The Netherlands)

- **1900 - 1980**
 - **Education in science**
 - Strong focus on concepts
 - Aim: careers in science
 - Laboratory skills as algorithm
 - Teacher-centred/dominated

- **1980 - 2000**
 - **Education about science**
 - Focus on concept-context
 - Aim: scientific literacy
 - Inquiry-based learning
 - Teacher-driven

- **2000 - present**
 - **Tendency towards STEM**
 - Knowledge AND skills
 - Aim: STEM literacy and skills
 - Problem-based learning
 - Student-centred

The FITS model

An approach for teaching and learning through design and inquiry
Why a tendency towards interdisciplinarity and STEM?

- The modern society and economy ask for STEM graduates
- Interdisciplinarity improves understanding and motivation
- STEM disciplines share a lot of knowledge and skills
- Connecting “knowing and doing” enhances learning
The FITS model
An approach for teaching and learning through design and inquiry

Design-based learning as educational approach

CHARACTERISTICS
- problem- and project-based
- design- and inquiry-based
- cooperative (design groups)
- knowing-doing connections
- student-centred
- iterative
- contextual

Teacher-guided rituals: sharing experiences/ideas among design groups
Whole-class discussions: understanding principles and concepts

Teacher-guided rituals: sharing experiences/ideas among design groups
Whole-class discussions: understanding principles and concepts

Design solutions

Final design and redesign

Exploration: What to do and learn?

Modeling and prototyping

Investigate: finding answers

(Kolodner, 2000)
What research shows?
(Kolodner et al., 2003; Van Breukelen et al., 2015)

- Design-based learning seems a promising educational approach
- Students get highly motivated due to the social, dynamic and contextual environment
- The learning level of skills exceeds levels found in traditional learning environments
- The learning level of concepts (knowledge) lags behind the level of skills

According to concept learning...
(Van Breukelen et al., 2017)

Complexity
- Extensiveness
- Diversity
- Dynamic

Process focus
- “Doing” mode
- Product focus
- Trial & error

Implicit learning
- Think...?
- Fragmented
- Masking
The FITS model
An approach for teaching and learning through design and inquiry

An educational model for learning by design and inquiry

FITS model

(Van Breukelen, Schure & De Vries, 2016)
The FITS model
An approach for teaching and learning through design and inquiry

Fundamental didactic principles

FITS model
Towards **explicit teaching and science lectures by backward design**

- Analysis of design challenge
- Learning objectives
- Didactic and pedagogical design

The FITS model

An approach for teaching and learning through design and inquiry

CONTENT PYRAMID

- **Strongly connected**
 - [direct content]
- **Weakly connected**
 - [indirect content]

Van Breukelen (2016)
The FITS model
An approach for teaching and learning through design and inquiry

Example: Paper airplane ■ centre of gravity ■ forces ■ torque

POOR FLIGHT

ACCEPTABLE

CONTEXTUALISED: PITCH

DEONTEXTUALISED: BALANCE
The FITS model
An approach for teaching and learning through design and inquiry

Fundamental didactic principles

FITS model

Scientific knowledge domain

ID Informed Design CO Continuity (of the process)
Informed design facilitates continuity of the learning process

The FITS model
An approach for teaching and learning through design and inquiry

<table>
<thead>
<tr>
<th>KNOWLEDGE AND SKILL BUILDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning skills</td>
</tr>
<tr>
<td>- Collaboration</td>
</tr>
<tr>
<td>- Feedback & reflection</td>
</tr>
<tr>
<td>- Organise & plan</td>
</tr>
<tr>
<td>- Use of tools (craft)</td>
</tr>
<tr>
<td>- Experimentation</td>
</tr>
<tr>
<td>Learning knowledge</td>
</tr>
<tr>
<td>- Procedural</td>
</tr>
<tr>
<td>- Technology</td>
</tr>
<tr>
<td>- Science</td>
</tr>
<tr>
<td>- Mathematics</td>
</tr>
<tr>
<td>- Engineering</td>
</tr>
<tr>
<td>Exploring design</td>
</tr>
<tr>
<td>- Design examples</td>
</tr>
<tr>
<td>- Reversed design</td>
</tr>
<tr>
<td>- Excursions</td>
</tr>
<tr>
<td>- Thinking challenges</td>
</tr>
</tbody>
</table>

CYCLE ZOOMING

<table>
<thead>
<tr>
<th>Type A</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Defining problems</td>
</tr>
<tr>
<td>- Requirements & rules</td>
</tr>
<tr>
<td>- Divergent thinking</td>
</tr>
<tr>
<td>Type B</td>
</tr>
<tr>
<td>- Divergent thinking</td>
</tr>
<tr>
<td>- Design solution</td>
</tr>
<tr>
<td>- Design creation</td>
</tr>
<tr>
<td>Type C</td>
</tr>
<tr>
<td>- Design testing</td>
</tr>
<tr>
<td>- Design analysis</td>
</tr>
<tr>
<td>- Redesign and retesting</td>
</tr>
</tbody>
</table>
The FITS model
An approach for teaching and learning through design and inquiry

Fundamental didactic principles

FITS model
The FITS model
An approach for teaching and learning through design and inquiry

Guided discussion creates a deeper understanding of content

Teacher-guided classroom discussion
Consider objectives
Explore students’ insights

Ask specific questions
Use students’ input
Deepen understanding

Objectives
1.
2.
3.

Ideas
Assumptions
Design groups

Insights
The teacher’s role: **sensative assistance** and **continuity**

The FITS model

An approach for teaching and learning through design and inquiry

- **Executer**
 - Lecturer
 - Teacher-driven

- **Adaptive Instructor**
 - Teacher-centred

- **Creative Facilitator**
 - Student-centred

- **Developer Coach**
 - Student-driven

Restricted Professional

PREPARATORY TEACHING SKILLS ▭ ANTICIPATORY TEACHING SKILLS

Extended Professional
Learning-related teaching guidelines

A = anticipatory skills P = preparatory skills

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Learning-related elements and teaching guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student (to student) interaction</td>
<td>[A] COLLABORATION</td>
</tr>
<tr>
<td></td>
<td>- P</td>
</tr>
<tr>
<td></td>
<td>- A</td>
</tr>
<tr>
<td></td>
<td>- A-P</td>
</tr>
<tr>
<td></td>
<td>- A-P</td>
</tr>
<tr>
<td>Student to teacher interaction</td>
<td>[B] REFLECTION</td>
</tr>
<tr>
<td></td>
<td>- P</td>
</tr>
<tr>
<td></td>
<td>- A</td>
</tr>
<tr>
<td></td>
<td>- A-P</td>
</tr>
<tr>
<td></td>
<td>- A-P</td>
</tr>
<tr>
<td>Student to content interaction</td>
<td>[C] TEACHER AND PEER FEEDBACK</td>
</tr>
<tr>
<td></td>
<td>- A</td>
</tr>
<tr>
<td></td>
<td>- P</td>
</tr>
<tr>
<td></td>
<td>- A</td>
</tr>
<tr>
<td></td>
<td>- A-P</td>
</tr>
<tr>
<td>[D] EXPLICIT TEACHING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- P</td>
</tr>
<tr>
<td></td>
<td>- A</td>
</tr>
<tr>
<td></td>
<td>- A-P</td>
</tr>
<tr>
<td></td>
<td>- A-P</td>
</tr>
<tr>
<td></td>
<td>- A</td>
</tr>
<tr>
<td>[E] PROCESS-RELATED ISSUES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- A</td>
</tr>
<tr>
<td></td>
<td>- P</td>
</tr>
<tr>
<td></td>
<td>- A</td>
</tr>
<tr>
<td></td>
<td>- A-P</td>
</tr>
</tbody>
</table>
The success of design- and inquiry-based learning strongly depends on…

THE TEACHER who…

…creates **RICH LEARNING UNITS**,

…provides **ADAPTIVE GUIDANCE**,

…continuously **EXPLICATES** learning content

…and **MERGES “KNOWING” AND “DOING”**
The FITS model
An approach for teaching and learning through design and inquiry

“thank you for your attention :)

https://is.gd/Psf6DB

dr. Dave H.J. van Breukelen
d.vanbreukelen@fontys.nl ■ Fontys University of Applied Sciences for Teacher Education Sittard (NL)